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1 Differential equations
Ordinary Differential Equation (ODE)

In general an ordinary differential equation (ODE) relates a
function f(x) at x to the values of its derivatives at x. I.e. it’s
an equation of the Form

F (x, f(x), f ′(x), f ′′(x), ..., f (n)(x)) = 0

The order of the diff. equation is the highest order of derivative
that appears in the equation.
A partial diff. equation is a diff. equation for a function of
several variables. (It involves ”partial derivatives”).

f ′(x+ 2) = f(x) is not an ordinary differential equation.

Linear ODE

A linear ODE of order k on I, is an equation of the form

y(k) + ak−1(x)y
(k−1) + ...+ a1(x)y

′ + a0(x)y = b(x)

where b, a1, ..., ak−1 are continous functions of x defined on I
with values in C.
If b(x) = 0,∀x ∈ I, we call the ODE homogeneous and
otherwise inhomogeneous.

Recognising a linear ODE
� no coefficients before the highest order derivative (excluding

constants)

� alle coefficients are continous functions

� no products of y and it’s derivatives

� y and all of it’s derivatives occur with the power one

� Neither y nor it’s derivatives are inside another function.

Solutions of Linear ODE’s

Let I ⊂ R open interval, k ≥ 1, k ∈ N.

y(k) + ak−1y
(k−1) + ...+ a0y = b

is a linear ODE over I with continous coefficients.
Then

1. The set of solutions S0 for the associated homoge-
neous ODE (when b = 0), is a vector space of dimen-
sion k.

2. For any initial conditions (i.e. any choice of x0 ∈ I and
(y0, ..., yk−1) ∈ Ck) there exists an unique solution

f ∈ S0 s.t. f(x0) = y0, f ′(x0) = y1, ..., f (k−1)(x0) =
yk−1.

3. For any arbitrary b(x), the set of solutions of the ODE
is

Sb = {f + fp | f ∈ S0}
where fp is a paritcular solution of the ODE.

4. For any initial condition there is a unique condition
there is a unique solution f ∈ Sb.

Sb is not a Vector Space! (It’s an affine Space.)

1.1 Linear ODE’s of order 1
I ⊂ R be an open interval.
We consider the diff. equation of the form

y′ + a(x)y = b(x)

1. (Homogeneous solution)

y′ + a(x)y = 0

y′

y
= −a(x) (assuming y ̸= 0,∀x ∈ I)

ln(|y|) = −A(x) + C

y = eC · e−A(x) = Ke−A(x),K ∈ C

If an initial condition is given, we can determine K.

2. (Particular solution)

Use either “Variation of parameters” or “Educated guess”.

1.2 Variation of parameters
We assume that the particular solution is of the form fp = K(x)e−A(x)

for a function K : I → C. Then we can insert our guess into the
ODE and see what it forces K to satisfy. We get

b(x) = (K(x)e−A(x))′ + a(x)(K(x)e−A(x))

b(x) = K′(x)e−A(x) − a(x)K(x)e−A(x) + a(x)K(x)e−A(x)

b(x) = K′(x)e−A(x)

K′(x) = b(x)eA(x)

and thus

K(x) =

∫ x

x0

b(t)eA(t) dt

Therefore we get

fp =

(∫ x

x0

b(t)eA(t) dt

)
· e−A(t)

The method with the “Integration factor” gives the same particular
solution!

1.3 Educated Guess for constant coefficients
If b(x) is of a specific form, we try following fp, where we insert
the fp into the ODE, which gives us a system of equations for the
constants:

b(x) Ansatz

a · eαx b · eαx

a sin(βx) c sin(βx) + d cos(βx)

b cos(βx) c sin(βx) + d cos(βx)

aeαx sin(βx) eαx
(
c sin(βx) + d cos(βx)

)
beαx cos(βx) eαx

(
c sin(βx) + d cos(βx)

)
Pn(x) · eαx Rn(x) · eαx

Pn(x) · eαx sin(βx) eαx (Rn(x) sin(βx) + Sn(x) cos(βx))

Pn(x) · eαx cos(βx) eαx (Rn(x) sin(βx) + Sn(x) cos(βx))

Pn, Rn and Sn are Polynomials of degree n.

1. If b(x) is a linear combination of any of the base functions,
try that linear combination of ’Ansatz’ functions.

2. If α/β from any of the ’Ansatz’ functions is a root of the
companion Polynomial of the ODE with multiplicity j, then
we try the same ’Ansatz’ as shown in the table but multiply
it with a Polynomial of degree j.

1.4 Linear ODE’s with constant coefficients
We consider an ODE of the form

y(k) + ak−1y
(k−1) + . . .+ a1y

′ + a0y = b(x)

We search for a homogeneous solution of the form eλx. Now we can
solve the characteristic polynomial:

P (λ) = eλx
(
λk + ak−1λ

k−1 + . . .+ a0
)
= 0

=⇒ 0 = λk + ak−1λ
k−1 + . . .+ a0

� The roots of P (λ) are the Eigenvalues λi, with corresponding
multiplicity mr. Thus the functions fi,r : x → xreλix, 0 ≤
r < mr span the Vector Space S0.

� If λ = β + γi is a complex of P (λ), then the complex con-
jugation, i.e. λ̄ = β − γi is also a root. Thus f1 = eλx and
f2 = eλ̄x are solutions to the homogeneous equation.

� We realize that f1 = eλx = eβx(cos(γx) + i sin(γx)) and
f2 = eλ̄x = eβx(cos(γx)− i sin(γx)).
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� We can thus replace f1 and f2 by f̃1 = eβx cos(γx) and
f̃2 = eβx sin(γx). (Note that f1 = f̃1+ if̃2 and f2 = f̃1− if̃2)

� Note that we are often only interested in finding real-valued
solutions if the coefficients are all real valued.

� If y(k) + ak−1y
(k−1) + · · · + a0y = 0 only has real coeffi-

cients, every pair of complex conjugated roots βj ± γji with
multiplicity mj leads to a solution

xleβjx
(
cos(γjx)± i sin(γjx)

)
for 0 ≤ l < mj

of which then the real part can be extracted.

To find a particular solution fp we can as in the general case use
Varation of parameters or Educated guess. We will now show
an simple example with 2 basis functions:
Consider the Linear ODE y′′ + ya1y′ + a0y = b

(1) Assume the space of homogeneous solutions S0 is spanned
by f1, f2, i.e. f0 = f1 + f2 is also a solution

(2) Now we try fp = z1(x)f1 + z2(x)f2

(3) We first insert fp into the ODE and we require the additio-
nal constraint that z′1(x)f1 + z′2(x)f2 = 0 to find a concrete
solution.

Therefore we get the following system of equations:

z′1(x)f1 + z′2(x)f2 = 0

z′1(x)f
′
1 + z′2(x)f

′
2 = b(x)

We can solve this as follows:

W = f1f
′
2 − f2f

′
1 ̸= 0

⇒ z′1 =
−f2b

W
, z′2 =

f1b

W

⇒ fp =

(∫ −f2b

W
dt

)
f1 +

(∫
f1b

W
dt

)
f2

1.5 Seperation of Variables
Consider a differential equation of the form

y′(x) = b(x)g(y)

Assume g(y(x)) ̸= 0. If ∃y0 s.t. g(y0(x)) = 0 then y = y0 is a
solution.

y′(x)

g(y(x))
= b(x)∫

y′(x)

g(y(x))
dx =

∫
b(x) dx

Applying substitution with u = y(x) we obtain∫
1

g(u)
du =

∫
b(x) dx

We can then determine both integrals and solve for u = y.

2 Derivations in Rn

Monomial in Rn

A Monomial of degree e is a function f : Rn 7→ R :

(x1, . . . , xn) 7→ αxd1
1 · . . . · xdn

n

e = d1 + . . .+ dn

→ i.e. a Polynomial that only has one term.

Polynomial in Rn

A Polynomial with n variables of degree d is a finite sum of
Monomials of degree e ≤ d.

2.1 Convergence
1. Dot product: ⟨x, y⟩ =

∑
i=0 xi · yi

2. Euclidean norm: ||x|| :=
√

x1
2 + · · ·+ x2

n with the following

properties:

(a) ||x|| ≥ 0, ||x|| = 0 ⇐⇒ x = 0

(b) ||λx|| = |λ| · ||x||,∀λ ∈ R
(c) ||x+ y|| ≤ ||x||+ ||y||
(d) | ⟨x, y⟩ | ≤ ||x|| · ||y||

Definition Convergence

Let (xk)k∈N, xk ∈ Rn. The following definitions for
limk→∞ xk = y equivalent:

1. ∀ϵ > 0∃N ≥ 1 such that ∀k ≥ N ||xk − y|| < ϵ.

2. For every i, 1 ≤ i ≤ n the sequence (xk,i)k of real
numbers converges to yi.

3. The sequence ||xk − y|| of real numbers converges to 0.

2.2 Continuity
Definition Continuity

Let f : X ⊂ Rn → Rm and x0 ∈ X.
f is continous in x0, if one of the following conditions is ful-
filled:

1. ∀ϵ > 0 ∃δ > 0 such that for all x ∈ X

||x− x0|| < δ =⇒ ||f(x)− f(x0)|| < ϵ

2. ∀ sequences (xk) in X with limk→∞ xk = x0 we have

lim
k→∞

f(xk) = f

(
lim

k→∞
xk

)
= f(x0)

f is continous on X ⇐⇒ f is continous at every point x0 ∈ X.
In Addition we have the following:

1. Cartesian product of continous functions is continous.

2. f : Rn 7→ Rm

(x1, . . . , xn) 7→ (f1(x), . . . , fm(x))
is continous ⇐⇒ fi : Rn → R continous ∀i = 1, . . . ,m.

3. Linear Maps x 7→ Ax are continous.

4. Finite sums and products of continous functions are conti-
nous.

5. Functions with seperated Variables are continous if each fac-
tor is continous. (i.e. f(x1, ..., xn) = f1(x1)f2(x2) · ... ·fn(xn)
is continous if f1, f2, ..., fn are continous.)

6. In particular Polynomials are continous.

7. The composition of continous functions is continous.

8. If f : R2 7→ R is continous. For an arbitrary fixed y0 ∈ R we
can define gy0 (x) := f(x, y0). Since gy0 is a composition of
continous functions it is also continous.

9. Warning! The converse is not true. gy0 continous for all y0 ∈
R does not imply that f is continous!

Sandwich-Lemma

If f, g, h : Rn → R are functions with f(x) < g(x) < h(x)
∀x ∈ Rn. Let a ∈ Rn:

lim
x→a

f(x) = lim
x→a

h(x) = L =⇒ lim
x→a

g(x) = L

2.3 Properties of sets
A set X ⊂ Rn is

� bounded, if the set {||x|| | x ∈ X} is bounded in R(i.e.
∃K ≥ 0, ∀x ∈ X : ||x|| ≤ K).

� closed, if every sequence (xk)k∈N ⊂ X, that converges to
some Vector y ∈ Rn, we have y ∈ X (i.e. limits of sequences
in X are also in X).

� compact, if its closed and bounded.

� open if, for any x = (x1, x2, ..., xn) ∈ X, there exists δ > 0
such that the set

{y = (y1, ..., yn) ∈ Rn | |xi − yi| < δ,∀1 ≤ i ≤ n}
is contained in X.

� convex, if ∀x, y ∈ X : λx + (1 − λ)y ∈ X, ∀0 ≤ λ ≤ 1 (the
line segment between x, y is contained in X).

� open, if and only if the complement Y = Rn \X is closed.
(Equivalent definition)

Important examples:

� (a, b) ⊂ R is open.

� [a, b) ⊂ R is neither open nor closed.

� Rn and ∅ are both open and closed. There exists no other set
in Rn which is both open and closed.

� If X ⊆ Rn, Y ⊆ Rm are both bounded (rsp. closed/compact)
then X × Y ⊆ Rn+m is bounded (rsp. closed/compact)

� In particular the cartesian product of compact intervals Ii ∈
R: I1 × I2 × ... × In = {(x1, x2, ..., xn) ∈ Rn | xi ∈ Ii} is
compact (i.e. closed and bounded).
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� Let f : Rn 7→ Rm be continous. Then for every closed(/open)
set Y ⊆ Rm, the set f−1(Y ) is closed(/open).

Bolzano-Weierstrass

Every bounded sequence in Rn has a converging partial se-
quence.

Min-Max-Theorem

Let X ⊂ Rn, X ̸= ∅ be compact and f : X → R a continous
function. Then f is bounded and achieves a max and a min.
I.e. ∃x+, x− ∈ X, such that

f(x+) = sup
x∈X

f(x) f(x−) = inf
x∈X

f(x)

2.4 Partial Derivatives
Partial Derivative

To find the partial derivative of f : X ⊂ Rn → R (whereby
X open) with respect to xj , 1 ≤ j ≤ n at a point x0 ∈ X we
define:

∂jf(x0) =
∂f

∂xj
(x0) = lim

h→0

f(x0 + h · ej)− f(x0)

h

where ej is the j-th canonical basis vector of Rn.

For f : Rn → Rm, x0 ∈ Rn we have

∂f(x0)

∂xj
:=


∂

∂xj
f1(x0)

...
∂

∂xj
fm(x0)


Partial derivatives have following properties:

1. ∂j(f + g) = ∂j(f) + ∂jg

2. ∂j(f · g) = ∂j(f) · g + ∂j(g) · f

3. ∂j(f/g) =
∂j(f)·g−∂j(g)·f

g2
for g ̸= 0

Jacobi-Matrix

Let f : X ⊂ Rn → Rm and X an open set. The Jacobi-Matrix
is the m× n Matrix:

Jf =

(
∂fi

∂xj

)
1≤j≤n
1≤i≤m

Gradient

In the special case of a function f : X ⊂ Rn → R, the Jacobi-
Matrix is a row vector which transposed gives us ∇f . The
geometric interpretation is a vectorfield, defined by ∇f , which
indicates the direction and magnitude of the biggest growth
of f .

2.5 Differentiability
Differentiability

Let X ⊂ Rn be open, x0 ∈ X. We have f : X → Rm.
We say that f is differentiable at x0, with the differential
u, if there exists a linear map u : Rn → Rm such that

lim
x→x0
x ̸=x0

f(x)− f(x0)− u · (x− x0)

||x− x0||
= 0

We denote u = df(x0) = dx0f .

� If f is differentiable at all points x0 ∈ X, then f is differen-
tiable on X.

� Having all partial derivatives defined is not sufficient to con-
clude Differentiability.

� If all partial derivatives are defined and continous, then f is
differentiable.

� The composition of differentiable functions is differentiable.

Conclusions from Differentiability

If f, g are differentiable in x0 ∈ X we have:

1. f is continous in x0

2. f has all partial derivatives at x0 and the matrix of the
linear map df(x0) : x 7→ Ax is given by the Jacobi-
Matrix of f at x0, i.e. A = Jf (x0)

3. d(f + g)(x0) = df(x0) + dg(x0)

4. If m = 1, then f · g is differentiable. If additionally
g ̸= 0, then f/g is also differentiable. (Product rule
and Quotient rule apply)

5. (Chain rule): Let X ⊆ Rn, Y ⊆ Rm be open.

If f : X → Y, g : Y → Rp are both differentiable, we
have d(g ◦ f)(x0) = dg(f(x0)) ◦ df(x0). Furthermore

Jg◦f (x0) = Jg(f(x0)) · Jf (x0)

Therefore

d(g ◦ f)(x0) : X → Rp x 7→ Jg(f(x0)) · Jf (x0) · x

Tangent Space

The tangent space at x0 of f is given by the graph of the
affine linear map g(x) = f(x0) + df(x0)(x− x0).
I.e.

{(x, g(x)) ∈ Rn × Rm | g(x) = f(x0) + df(x0)(x− x0)}

Directional Derivative

Let f : X ⊆ Rn → Rm be differentiable at x0 ∈ X. For any
v ∈ Rn, v ̸= 0 the directional Derivative of f at x0 exists
and is defined as

∂vf(x0) = lim
h→0

f(x0 + hv)− f(x0)

h
= Jf (x0) · v

Change of variables (Bijection)

Let X ⊂ Rn be open and f : X → Rn differentiable. f is a
change of variable around x0 ∈ X if there exists a radius
r > 0 such that the Ball

Br(x0) := {x ∈ Rn | ||x− x0|| < r}

has the property that the Image Y = f(Br(x0)) is open and
there exists a differentiable map g : Y → Br(x0) such that
f ◦ g = g ◦ f = id.
We find that if det(Jf (x0)) ̸= 0 (i.e. Jf (x0) is invertible), then
f is a change of variables around x0. Moreover the Jacobian
of the inverse map g is determined by

Jg(f(x0)) = Jf (x0)
−1

(Analog to the fact that a function h : I ⊆ R → R is bijective
from I to its image if h′ > 0 or h′ < 0)

2.6 Higher derivatives
Notation for higher partial derivatives
For a function f : Rn → Rt we denote higher order partial derivati-
ves with the following:
First let m = (m1,m2, ...,mn) and |m| = m1 +m2 + ...+mn.
We write

∂|m|fj

∂xm1
1 ∂xm2

2 · ... · ∂xmn
n

= ∂
|m|
xm fj , 1 ≤ j ≤ t

Differential Classes
Let X ⊂ Rn be open, f : X → Rm.

� We say that f is differentiable of class C1 if f is differentiable
on X and all its partial derivatives are continous. The set of
all C1 functions from X to Rm are denoted by C1(X : Rm).

� Let k ≥ 2. We say f ∈ Ck(X : Rm) (i.e. f is of class Ck) if
its differentiable and each ∂xif : X → Rm (1 ≤ i ≤ n) is of
class Ck−1.

� We say that f is smooth or of class C∞ if f ∈ Ck, ∀k ∈ N.
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� All polynomials, trigonometric and exponential functions are
of class C∞.

� If f ∈ Ck, k ≥ 2 then all partial derivatives of order ≤ k are
commutative.

∂2f

∂xi ∂xj
=

∂2f

∂xj ∂xi

Hessian

Let X ⊂ Rn be open and f : X → R a C2 function.
For an x0 ∈ X, the Hessian matrix of f at x0 is the sym-
metric n× n matrix that denotes the second derivative:

Hessf (x0) :=

(
∂2f(x0)

∂xi ∂xj

)
1≤i,j≤n

Sometimes we also denote it by ∇2f(x0) or Hf (x0).

2.7 Taylor polynomials
Let k ≤ 1 and f : X 7→ R be a funciton of class Ck on X, and
fix x0 ∈ X. The k-th Taylor polynomial of f at the point x0 is the
polynomial in n variables of degree ≤ k given by

Tkf(y;x0) = f(x0) +

n∑
i=1

∂if(x0) · yi + . . .

+
∑

m1+···+mn=k

1

m1! · · ·mn!

∂kf(x0)

∂xm1
1 · · · ∂xmn

n
· ym1

1 · · · ymn
n

Using our new notation for higher-order derivatives we can denote
the Taylor polynomial by

Tk(y;x0) =
∑

|m|≤k

1

m!
∂
|m|
xm f(x0) · ym

with m! = m1!m2! · ... ·mn!

Examples

T1f(x⃗;x0) := f(x0) + (∇f(x0))
T · x⃗

T2f(x⃗;x0) := T1f +
1

2
· x⃗⊤ ·Hessf (x0) · x⃗

2.8 Extrema
Local Extrema
Let f : X ⊂ Rn 7→ R be differentiable and X open.
Then x0 ∈ X is a local Maximum (Minimum) if there exists an
r > 0, r ∈ R and Bx0 (r) = {x ∈ Rn | ||x− x0|| < r} ⊂ X such that:

∀x ∈ Bx0 (r) : f(x) ≤ (≥)f(x0)

If x0 ∈ X is a local extrema, we additionally have ∇f(x0) = 0.

Critical point
A point x0 ∈ X with ∇f(x0) = 0 is a critical point.
Critical points are candidates for local extrema.
If additionally det(Hessf (x0)) ̸= 0, then x0 is a non-degenerate
critical point.

Saddle point
If a critical point is neither a maximum nor a minimum, we call it
a saddle point.

Global Extrema
Let f : K 7→ R and K compact, then a global extrema of f exists
and is either at a point x0 in the interior of K or on the boundary of
K. To determine such an global extrema we split K into it’s interior
X and the boundary B.
First we determine the critical points of X. To determine the Maxi-
mas/Minimas B, we will need Knowledge from Analysis I (redefine
the boundary as a union of sets dependend on 1 variable, i.e. Line-
segments).

Testing critical points
Let f : X ⊆ Rn 7→ R, X open and f ∈ C2. Let x0 be a non-
degenerate critical point of f . Then we:

1. Hessf (x0) pos. def. =⇒ x0 is a local Minimum.

2. Hessf (x0) neg. def. =⇒ x0 is a local Maximum.

3. Hessf (x0) indefinite =⇒ x0 is a saddle point.

If x0 is a degenerate critical point, we can’t conclude anything
in general. In such a case we would have to verify the signs in the
neighborhood of x0. (Not much information found on how to do
that in multi-variable calculus)

Critical points with constraints
If we want to determine the Minimas/Maximas of a function f :
X 7→ R with the constraint g(x) = 0, g : X 7→ R, we can use the
Lagrange multipliers.

Lagrange multipliers

Let X ⊂ Rn be open and f, g : X 7→ R functions of C1. If x0

is a local extremum of f restricted to the set

Y = {x ∈ X | g(x) = 0}

then either ∇g(x0) = 0, or there exists λ ∈ R such that

∇f(x0) = λ · ∇g(x0)

and g(x0) = 0.

2.9 Definite
A symmetric (non-singular) matrix A, detA ̸= 0 is

� positive definite ⇐⇒ all Eigenvalues are positive ⇐⇒
all principal minors of A are positive

� negativ definite ⇐⇒ all E.V. are negative ⇐⇒ −A is
positive definite.

� indefinite if it has positive and negative Eigenvalues.

Eigenvalues can be found with the characterstic polynomial:

det

((
a b
c d

)
−
(
λ 0
0 λ

))
= det

(
a− λ b

c d− λ

)
⇒ ad− (a+ d)λ+ λ2 − bc = 0

For non-symmetric Matrices we have to test for all Vectors v, if
v⊤Av > 0 (rsp. < 0).

3D Determinant

a · det
(
e f
h i

)
− b · det

(
d f
g i

)
+ c · det

(
d e
g h

)
Principal Minor

The k-th leading principal minor of A is given by

Mk = det
(
(A)1:k,1:k

)
3 Integrals in Rn

3.1 Simple Integrals
For f : R 7→ Rn we define the integral of f as

∫ b

a
f(t)dt =


∫ b
a f1(t)dt

...∫ b
a fn(t)dt


3.2 Line Integrals (Path Integrals)
A parameterized curve

A parameterized curve in Rn is a continous map γ : [a, b] 7→
Rn that is piecewise in C1, i.e. ∃k > 1, k ∈ N and a partition
a = t0 < t1 < ... < tk = b, such that

γ|[ti−1,ti]
∈ C1, ∀1 ≤ i ≤ k.

A parameterized curve does not have to be injective.

Useful trick:
In general if γ : [a, b] → Rn(t 7→ γ(t)) is a curve, then α : [a, b] → Rn

with α(t) := γ(b + a − t) traces the same curve in the opposite
direction.

Length of a parameterized curve
Let γ : [a, b] → Rn be an injective and γ ∈ C1. The length of the
curve γ(t) can be found by

L(γ) =

∫ b

a
|γ′(t)| dt,

where |.| is the Euclidean norm.

Line(Path) Integrals

Let γ : [a, b] 7→ Rn be a parameterized curve and X ⊂ Rn

a set containing the image of γ, and let f : X → Rn be a
continous function. The Line Integral (Path Integral) is
defined as ∫

γ
f(s) ds =

∫ b

a
f(γ(t)) · γ′(t) dt

For Notation s represents γ(t) and ds represents γ′(t) dt.

Line Integrals have following properties:
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1. It is independent of orientation preserving reparameterizati-
on of the curve:

γ : [a, b] 7→ Rn

σ : [c, d] 7→ [a, b], σ′(t) > 0 ∀t ∈ (c, d)

γ̃ : [c, d] 7→ Rn

γ̃ = γ ◦ σ = γ(σ)

⇒
∫
γ
f(s) ds =

∫
γ̃
f(s) ds

2. We have γ1 : [a, b] → X ⊂ Rn, γ2 : [c, d] → X with γ1(b) =
γ2(c). We can now concatenate these 2 curves to γ1 + γ2

γ1 + γ2 :=

{
γ1(t) t ∈ [a, b]

γ2(t− b+ c) t ∈ [b, b+ (d− c)]∫
γ1+γ2

f(s) ds =

∫
γ1

f(s) ds+

∫
γ2

f(s) ds

3. Let γ : [a, b] 7→ Rn be a path and −γ : [a, b] → Rn the same
path in the opposite direction (i.e. (−γ)(t) = γ(a + b − t)).
Then we have ∫

−γ
f(s)ds = −

∫
γ
f(s)ds

3.3 Potential
A differentiable function g : X ⊂ Rn 7→ R with ∇g = f, f : X 7→ Rn

is called a potential for f . This can be used as follows:∫
γ
f ds =

∫ b

a
f(γ(t)) · γ′(t) dt

=

∫ b

a
∇g(γ(t)) · γ′(t) dt

=

∫ b

a

d

dt
(g ◦ γ) dt

= (g ◦ γ)(b)− (g ◦ γ)(a)

For a function f : Rn → Rn there is not always a potential g! And
continuity of f is not sufficient for the existence of a potential for
f . (Counterexample: f(x, y) = (2xy2, 2x))

3.4 Conservative Vector fields
Conservative Vector fields

f : X → Rn continous Vector field. If for any x1, x2 ∈ X the
line integrals

∫
γ f ds for any curve between x1, x2 are equal,

f is called conservative.

Let X be open and a path-connected subset of Rn. Let f : X ⊂
Rn 7→ Rn be a continous vector field. The following are equivalent:

1. f is the gradient of a function g : X → R, i.e. f = ∇g.

2. The line integral of f is independent of the path between any
2 points.

3. The line integral of f along any closed path is always 0. (A
closed path γ : [a, b] → X fulfills γ(a) = γ(b))

We additionally have this necessary but not sufficient condition:

f is conservative =⇒
∂fi

∂xj
=

∂fj

∂xi
∀i, j

Path-connected set

Let X ⊂ Rn be open. X is path-connected, if for every pair of
points x, y ∈ X there exists a parameterized curve γ : [0, 1] 7→
X, such that γ(0) = x, γ(1) = y.

Starshaped set

A subset X ⊂ Rn is starshaped if there ∃x0 ∈ X such that,
∀x ∈ X the line segment joining x0 to x is contained in X.

X convex =⇒ X starshaped

If X is a starshaped, open subset of Rn and f ∈ C1 a vector field,
we have:

∂fi

∂xj
=

∂fj

∂xi
∀i, j ⇒ f is conservative

For f : X ⊂ R3 → R3, f ∈ C1 we also have:

curl(f) =

0
0
0

 ⇒ f is conservative

(As above only for f : X ⊂ R3 → R3)
curl(f) is defined as

curl(f) :=

∂yf3 − ∂zf2
∂zf1 − ∂xf3
∂xf2 − ∂yf1


3.5 Riemann Integral in Rn

Cuboid / box in Rn

A cuboid or box Q ⊂ Rn is a set of the form

Q = [a1, b1]× [a2, b2]× ...× [an, bn], ak, bk ∈ R

The volume function vol(·) assigns to each cuboid a real
number by the rule

vol(Q) =
n∏

k=1

(bk − ak) = µ(Q).

For a given cuboid Q we call P = {Q1, Q2, ..., Qm} a parti-
tion of Q if the Qk are cuboids such that

1.Q =
m⋃

k=1

Qk

2.∀ 1 ≤ k, l ≤ m : Int(Qk) ∩ Int(Ql) = ∅

Let f : Q ⊂ Rn → R for some cuboid Q. Let P = {Q1, ..., Qm}
be a partition of Q. We define the upper resp. lower sum of f with
respect to P by

U(f,P) =
m∑

k=1

supx∈Qk
f(x) · vol(Qk),

L(f,P) =

m∑
k=1

infx∈Qk
f(x) · vol(Qk).

Accordingly we define the upper resp. lower sum of f by

I(f) = inf{U(f,P) | P is a partition of Q}
I(f) = sup{L(f,P) | P is a partition of Q}

If the lower and upper sum of f are equal we say that f is Riemann
integrable and write ∫

Q
f dx = I(f) = I(f).

3.5.1 General sets
Let X ⊂ Rn be some bounded set and let f : X → R. We can define
an indicator function by

1X(x) =

{
1, x ∈ X

0, else
, (1Xf)(x)

{
f(x), x ∈ X

0, else
.

Now given some cuboid Q, s.t. X ⊆ Q we define∫
X

f dx =

∫
Q
(1Xf)(x) dx

provided the latter integral exists.
Note that in general (1Xf)(x) is not continous on Q. But if X is

Jordan-measurable(i.e. 1X(x) is integrable) and f is continous on

X, then one can prove that (1Xf)(x) is integrable on Q.

3.5.2 Properties of the Integral
Let f, g : Q ⊂ Rn → R:

1. If f is continous and bounded on Q, then f is integrable.

2. If f, g integrable, α, β ∈ R, then αf + βg is integrable:∫
Q
αf + βg dx = α

∫
Q
f dx+β

∫
Q
g dx

3. If ∀x ∈ Q : f(x) ≤ g(x), then:∫
Q
f(x) dx ≤

∫
Q
g(x) dx

4. If f(x) ≥ 0, then:
∫
Q f(x) dx ≥ 0

5. Triangle inequality:∣∣∣∣∫
Q
f(x) dx

∣∣∣∣ ≤ ∫
Q
|f(x)| dx ≤ (supQ|f |)(volQ)
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Fubini’s Theorem

Let f : X ⊂ Rn → R and n = n1 + n2, n1, n2 ≥ 1
For x ∈ Rn write x = (x1, x2) with x1 ∈ Rn1 , x2 ∈ Rn2 .
We define

Xx1
:= {x2 ∈ Rn2 | (x1, x2) ∈ X} ⊂ Rn2

X1 := {x1 ∈ Rn1 | Xx1
̸= ∅} ⊂ Rn1

If g(x1) :=
∫
Xx1

f((x1, x2)) dx2 is continous on X1 then

∫
X

f(x) dx =

∫
X1

g(x1) dx1 =

∫
X1

(∫
Xx1

f((x1, x2)) dx2

)
dx1

More concretely for a cuboid Q = [a1, b1]× ...× [an, bn] and
f : Q → R integrable we have:∫

Q
f dx =

(∫ b1

a1

(∫ b2

a2

...

(∫ bn

an

f(x) dxn

)
...

)
dx1

)
For a general set
A := {(x, y) ∈ R2 | a ≤ x ≤ b, g(x) ≤ y ≤ h(x)} ⊂ R2:∫

A
f dx dy =

∫ b

a

(∫ h(x)

g(x)
f(x, y) dy

)
dx

Remark
Note that g(x1) might not be continous on X1.
E.g. X = [0, 1]× [0, 2] ∪ [1, 2]× [0, 1] and f = 1.∫
X 1 dx dy exists.

We then have X1 = [0, 2] and Xx =

{
[0, 2] x ≤ 1

[0, 1] 1 ≤ x ≤ 2

g(x) =

∫
Xx

1 dy =

{
2 x ≤ 1

1 1 ≤ x ≤ 2

is not continous.
We can still solve this problem by seperating X into A = [0, 1]×[0, 2]
and B = [1, 2] × [0, 1]. Note that A ∩ B ̸= ∅, i.e. there’s a segment
we integrate twice. But this is negligible in a similar fashion to the
1D case when we split an integral.

3.5.3 Negligible Sets
1. Let 1 ≤ m ≤ n be an integer. A parameterized m-set in

Rn is a continuous map f : [a1, b1] × ... × [am, bm] → Rn

which is in C1 on ]a1, b1[×...×]am, bm[.

2. A subset Y ⊂ Rn is negligible if there ∃k >= 1 with para-
meterized mi-sets fi : Xi → Rn, with 1 ≤ i ≤ k and mi < n,
such that

Y ⊂
k⋃

i=1

f(Xi)

3. (Integral on negligible sets) For X ⊂ Rn compact. X negligi-
ble. For any continous function on X we have

∫
X f(x) dx = 0.

4. (Domain additivity) If X = A1 ∪ A2, A1, A2 compact then
for f : X → R:∫

X
f dx =

∫
A1

f dx+

∫
A2

f dx−
∫
A1∩A2

f dx

Of course if A1 ∩A2 is negligible we can disregard that inte-
gral.

3.6 Change of Variables
Let X,Y compact, f : Y ⊂ Rn → R be continous.
Suppose we have γ : X → Y where X = X0 ∪B, Y = Y0 ∪C (B,C
boundary of X,Y resp.).
Suppose γ : X0 → Y0 is C1 bijective and det(Jγ(x)) ̸= 0, ∀x ∈ X0.
Then we have the following:∫

Y
f(y) dy =

∫
X

f(γ(x))|detJγ(x)| dx

1. Polar coordinates:

γ(r, θ) = (r cos(θ), r sin(θ))

with dx dy = r dr dθ

2. Cylindrical coordinates:

γ(r, θ, z) = (r cos(θ), r sin(θ), z)

with dx dy dz = r dr dθ dz

3. Spherical coordinates:

γ(r, θ, φ) = (r sin(φ) cos(θ), r sin(φ) sin(θ), r cos(φ))

with dx dy dz = r2 sin(φ) dr dθ dφ

Don’t forget the determinant of the Jacobi-Matrix!

3.7 Green’s theorem
Green’s theorem only concerns itself with functions from a 2-dimensional
to a 2-dimensional space.

Green’s theorem

Let X ⊂ R2 be compact with a boundary ∂X =
⋃n

i=1 γi
that is the union of finitely many simple closed parameterized
curves. Assume that

γi : [ai, bi] → R2

has the property that X lies always “to the left” of the tangent
vector γ′

i(t) based at γi(t).

Let f : U ⊂ R2 → R2 with f = (f1, f2) in C1 and X ⊂ U .
Then we have∫

∂X
f(x) ds =

∫ ∫
X

∂f2

∂x
−

∂f1

∂y
dx dy

Note that from f in C1 it follows, that curl(f) = ∂f2
∂x

− ∂f1
∂y

is
integrable.
For any curve γ : [a, b] → R2

� simple means that there exists no s, t ∈]a, b[, s ̸= t such that
γ(s) = γ(t).

� closed means: γ(a) = γ(b).

To calculate the surface of X with Green’s Theorem we use
a vector field f with curl(f) = 1. For instance:

f = (0, x) or f = (−y, 0)

Parametrization of common planes
� General Ellipse Equation around (x0, y0):

(x− x0)2

a2
+

(y − y0)2

b2
= 1

can be parameterized by

f(t) = (x0 + a · cos(2πt), y0 + b · sin(2πt)), t ∈ [0, 2π]

� Any curve given by an explicit equation

y = f(x), f : [a, b] → R,

can be parameterized trivially by (x, y) = (t, f(t)) for some
t ∈ [a, b].

4 Topics from Analysis I
Partial Integration∫

f ′(x)g(x) dx = f(x)g(x)−
∫

f(x)g′(x) dx

� In general: Choose to derive Polynomials (as g(x)), for peri-
odic functions (sin, cos, ex,...) choose to integrate (as f ′(x))

� It can be necessary to multiply with 1, to be able to use
partial Integration (e.g. for

∫
log(x) dx)

� There exist combinations, where partial integration will al-
ways circle back to the original function (e.g.

∫
ex cos(x) dx).

In such cases treat the integral as an unknown and solve for
it (indirect computation of the integral).

Substitution

To calculate
∫ b
a f(g(x)) dx: Replace g(x) by u and integrate∫ g(b)

g(a)
f(u) du

g′(x) .

� g′(x) has to be elimnated otherwise useless.

� Don’t forget to change the boundaries of the integral.

� Alternatively one could compute the improper integral and
then resubstitute u by g(x).

� One can also use the theorem in the other direction. In es-

sence
∫ b
a f(u) du =

∫ g−1(b)

g−1(a)
f(g(x))g′(x) dx.



7

Partial fraction decomposition

Let p(x), q(x) be 2 Polynomials.
∫ p(x)

q(x)
can be computed as

follows:

1. If deg(p) ≥ deg(q), we do a Polynomdivision. This

leads to the Integral
∫
a(x) +

r(x)
q(x)

.

2. Find the roots of q(x).

3. Per root: Create one partial fraction.

� non-repeating, real: x1 → A
x−x1

� multiplicity n, real: x1 → A1
x−x1

+ . . .+ Ar
(x−x1)r

� non-repeating, complex: x2 + px+ q → Ax+B
x2+px+q

� multiplicity n, complex: x2+px+q → A1x+b1
x2+px+q

+. . .

4. Determine the parameters A1, . . . , An (rsp.
B1, . . . , Bn). (Multiply both sides of the equati-
on with q(x) and then solve for the coefficients. Due
to the powers of x, you will have n equations for n
unkown parameters).

5 Trigonometric identities
Doubled angles

� sin(2α) = 2 sin(α) cos(α)

� cos(2α) = cos2(α)− sin2(α) = 1− 2 sin2(α)

� tan(2α) =
2 tan(α)

1−tan2(α)

Addition
� sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

� cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)

� tan(α+ β) =
tan(α)+tan(β)
1−tan(α) tan(β)

Subtraction
� sin(α− β) = sin(α) cos(β)− cos(α) sin(β)

� cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

� tan(α− β) =
tan(α)−tan(β)
1+tan(α) tan(β)

Multiplication

� sin(α) sin(β) = − cos(α+β)−cos(α−β)
2

� cos(α) cos(β) =
cos(α+β)+cos(α−β)

2

� sin(α) cos(β) =
sin(α+β)+sin(α−β)

2

Powers
� sin2(α) = 1

2
(1− cos(2α))

� sin3(α) = (3 sin(α)− sin(3α))/4

� cos2(α) = 1
2
(1 + cos(2α))

� cos3(α) = (3 cos(α)− cos(3α))/4

� tan2(α) =
1−cos(2α)
1+cos(2α)

� sin2(α) cos2(α) = (1− cos(4α))/8

Divers
� sin2(α) + cos2(α) = 1

� cosh2(α)− sinh2(α) = 1

� sin(z) = eiz−e−iz

2i
und cos(z) = eiz+e−iz

2

Taylor expansions 1D at 0:

� sin(x) =
∑∞

n=0(−1)n · x2n+1

(2n+1)!

� cos(x) =
∑∞

n=0(−1)n · x2n

(2n)!

� ex =
∑∞

n=0
xn

n!

� e−x =
∑∞

n=0(−1)n · xn

n!

� sinh(x) =
∑∞

n=0
x2n+1

(2n+1)!

� cosh(x) =
∑∞

n=0
x2n

(2n)!

6 Tables
Derivations

F(x) f(x) f ′(x)

x−a+1

−a+1
1
xa

a
xa+1

xa+1

a+1
xa (a ̸= 1) a · xa−1

1
k ln(a)

akx akx kakx ln(a)

ln |x| 1
x

− 1
x2

2
3
x3/2 √

x 1
2
√
x

− cos(x) sin(x) cos(x)

sin(x) cos(x) − sin(x)

1
2
(x− 1

2
sin(2x)) sin2(x) 2 sin(x) cos(x)

1
2
(x+ 1

2
sin(2x)) cos2(x) −2 sin(x) cos(x)

− ln | cos(x)| tan(x)

1
cos2(x)

1 + tan2(x)

cosh(x) sinh(x) cosh(x)

log(cosh(x)) tanh(x) 1
cosh2(x)

ln | sin(x)| cot(x) − 1
sin2(x)

1
c
· ecx ecx c · ecx

x(ln |x| − 1) ln |x| 1
x

1
2
(ln(x))2

ln(x)
x

1−ln(x)

x2

x
ln(a)

(ln |x| − 1) loga |x| 1
ln(a)x

Further derivations

F(x) f(x)

arcsin(x) 1√
1−x2

arccos(x) −1√
1−x2

arctan(x) 1
1+x2

xx (x > 0) xx · (1 + lnx)
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Integrals

f(x) F(x)

∫
f ′(x)f(x) dx 1

2
(f(x))2∫ f ′(x)

f(x)
dx ln |f(x)|∫∞

−∞ e−x2
dx

√
π∫

(ax+ b)n dx 1
a(n+1)

(ax+ b)n+1

∫
x(ax+ b)n dx

(ax+b)n+2

(n+2)a2 − b(ax+b)n+1

(n+1)a2∫
(axp + b)nxp−1 dx

(axp+b)n+1

ap(n+1)∫
(axp + b)−1xp−1 dx 1

ap
ln |axp + b|∫

ax+b
cx+d

dx ax
c

− ad−bc
c2

ln |cx+ d|∫
1

x2+a2 dx 1
a
arctan x

a∫
1

x2−a2 dx 1
2a

ln
∣∣∣x−a
x+a

∣∣∣∫ √
a2 + x2 dx x

2
f(x) + a2

2
ln(x+ f(x))

7 Sample tasks
Some tasks and Multiple Choice from the homework and previous
exams.
Solutions are either my own, solutions published by the course (ho-
meworks, offical exam solutions) or solutions published in the VIS
comsol. Many thanks to all contributors!

7.1 Multiple Choice
Let F (x, y) = (F1, F2)(x, y) = ( −y

x2+y2 ,
x

x2+y2 ) and let γ be the

standard parametrization of the unit circle centered at the origin
and oriented counter-clockwise. Since ∂F2

∂x
= ∂F1

∂y
, by Green’s theo-

rem it holds that
∫
γ F · ds = 0.

(A) true
(B) false
Not all partial derivatives are continous, i.e. F /∈ C1, which is a
necessary condition for Green’s theorem.

The following sets are:

� {(x, y, z) ∈ R3 | x2 + y2 + z2 < 2022}
bounded, closed, compact

� {(x, y, 0) ∈ R3 | (x, y) ∈ R′2}
bounded, closed, compact

� N× N ⊆ R2

bounded, closed, compact

� B = {(sin(1/t), cos(1/t)) ∈ R2 | t ∈]0, 1/2π[}
bounded, closed, compact

We find that

{(sin(t), cos(t)) ∈ R2 | t ∈ [2π, 4π]} = B

It’s easy to see that, this newly defined set is closed and boun-
ded, which therefore implies that B is closed and bounded
(and therefore compact).

� [−1, 1]2 ⊆ R2

bounded, closed, compact

� {(x, y, x2 − y2) ∈ R3 | (x, y) ∈ [0, 1]2}
bounded, closed, compact

If f is a vector field of class C1 on R2−{0} and for all closed curves
γ : [0, 1] → R2 − {0}, then f is conservative.
(A) true
(B) false

Proof by contradiction: Assume f is a non-conservative vector field

of class C′ on R − {0} and

∫
γ
f · ds = 0 for all closed γ : [0, 1] →

R2 − {0}. Since f is non-conservative, there exists parameterized
curve γ1, γ2 : [0, 1] → R2 − {0} from a to b, where a, b ∈ R2, such
that: ∫

γ1

f · ds ̸=
∫
γ2

f · ds

We let γ′ be the closed curve formed by γ1 and the inversed curve
of γ2:

γ′ =

{
γ1(2t) if 0 ≤ t ≤ 1/2

γ2(2(1− t)) if 1/2 ≤ t ≤ 1

We have: ∫
γ′

f · ds =

∫
γ1

f · ds−
∫
γ2

f · ds ̸= 0

This contradicts our assumption, f must be conservative.

The function f : R2 → R f(x, y) = |xy| is differentiable at (0, 0).
(A) true
(B) false
Since f(x, y) is constant, if we approach (0, 0) along the x or y-Axis,
we know that the differential at (0, 0) should be Jf = (0, 0), if it
exists.
We now use the definition of Differentiability(section 2.5), with u =
Jf (0, 0):

lim
(x,y)→(0,0)
(x,y)̸=(0,0)

f(x, y)− f(0, 0)− (0, 0) · ((x, y)− (0, 0))

||(x, y)− (0, 0)||

= lim
x→(0,0)
x ̸=(0,0)

f(x, y)

||(x, y)||

= lim
x→(0,0)
x ̸=(0,0)

|xy|√
x2 + y2

Since
|y|√

x2+y2
≤ 1, we have 0 ≤ |xy|√

x2+y2
≤ |x|. By Sandwich-

Theorem therefore since |x| → 0 for (x, y) → (0, 0), we have

lim
x→(0,0)
x ̸=(0,0)

|xy|√
x2 + y2

= 0.

The limit lim(x,y)→(0,0) cos(
x2

x2+|y| ) exists and is finite.

(A) true
(B) false

Observe that for y = x2, we find the limit: lim
x→0

cos
(

x2

2x2

)
= cos

(
1
2

)
,

while if y = 0, we have: lim
x→0

cos
(

x2

x2

)
= cos(1).

Which of the following is the tangent plane of the ellipsoid

2x2 + 2y2 +
1

4
z2 = 1,

which is parallel to the plane x+ y + z = 1?

□ x+ y + z = 0

□ x+ y + z = k for k ∈ {± 2√
5
}

□✓ x+ y + z = k for k ∈ {±
√
5}

□ x+ y + z = k for k ∈ {±1}
We can describe the points on the Ellipsoid, as a level set of f(x, y, z) =

2x2 + 2y2 + z2

4
. I.e. the points on the Ellipsoid are L = {(x, y, z) ∈

R3 | f(x, y, z) = 1}.
Since for a level set, the gradient is always the normal vector, we
can look for a point, where the gradient is parallel to the normal
vector of the plane (1, 1, 1).
Thus we have

∇f(x, y, z) =
(
4x, 4y,

z

2

)
= a(1, 1, 1)

for a real number a. We deduce that x = y = a
4
and z = 2a.

By substituting these values into the equation for the level set, we
get

f(x, y, z) =
a2

8
+

a2

8
+ a2 = 1 =⇒ a± = ±

2
√
5

We therefore find (x, y, z)+ = ( 1
2
√
5
, 1
2
√
5
, 4√

5
) and (x, y, z)− =

(− 1
2
√
5
,− 1

2
√
5
,− 4√

5
. We insert these points into the equation x +

y + z = k and find that k± = ±
√
5.

7.2 Other tasks
Compute the value f(2π) where f is the unique function on [π, 2π]
such that

xf ′(x) = f(x)x2 sin(x) for π ≤ x ≤ 2π

and f(π) = 0.

If we rewrite the equation to f ′(x)− 1
x
f(x) = x sin(x), we find that

it’s a linear ODE of the form y′ + a(x)y = b(x).
Using Variation of parameters (section 1.2), we find that the solu-
tion is of the form fp = K(x)e−A(x), where A(x) = − ln(x) is the
primitive of a(x) = − 1

x
.
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We now have fp = K(x)e−(− ln(x)) = K(x) · x.

K(x) =

∫ x

x0

x · sin(x) · e− ln(x) dx =

∫ x

x0

x · sin(x) ·
1

x
dx =

∫ x

x0

sin(x) dx

= − cos(x) + C, C ∈ R
=⇒ fp = (− cos(x) + C)x

From f(π) = 0 we know that (− cos(π) + C)π = 0 =⇒ C = −1.
Therefore fp = (− cos(x)− 1)x and f(2π) = −4π.

We introduce the following definition: Let k ≥ 0 be a real number.
A function f :]0,∞[3→ R is said to be homogeneous of degree k if
f(tx, ty, tz) = tkf(x, y, z) for all x, y and z strictly positive.

Let f be of class C1 on ]0,∞[3. For a fixed (x, y, z) ∈]0,∞[3, k ≥ 0,
and t > 0, define

g(t) = f(tx, ty, tz)−tkf(x, y, z) = f(h(t))−tkf(x, y, z), h(t) = (tx, ty, tz).

(a) Show that g is differentiable on ]0,∞[ and that
g′(t) = x(∂xf)(tx, ty, tz)+y(∂yf)(tx, ty, tz)+z(∂zf)(tx, ty, tz)−
ktk−1f(x, y, z)

Since h and f are differentiable, their composition is diffe-
rentiable.

For the derivation of g we use the chain rule for the left part:

g′(t) = ∂f(h(t)) · ∂h(t)− ktk−1f(x, y, z)

= (∇f(h(t)))T · (x, y, z)− ktk−1f(x, y, z)

=

(
∂

∂x
f(h(t)),

∂

∂y
f(h(t)),

∂

∂z
f(h(t))

)T

(x, y, z)

− ktk−1f(x, y, z)

(b) Deduce that if f is homogeneous of degree k, then we have

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= kf

Note that for f homogeneous of degree k, g = 0, g′ = 0.
Therefore

x(∂xf)(h(t))+y(∂yf)(h(t))+z(∂zf)(h(t))) = ktk−1f(x, y, z)

Note that this equation is valid for all t > 0, in particular for
t = 1, which gives us our desired result:

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= kf

Suppose that f satisfies

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= kf (1)

(c) Show that g (as defined above) satisfies g(1) = 0 and is a
solution of the ODE

tg′ − kg = 0

We have

tg′ − kg =(tx)(∂xf)(tx, ty, tz) + (ty)(∂yf)(tx, ty, tz)

+ (tz)(∂zf)(tx, ty, tz)

− ktkf(x, y, z)− kf(tx, ty, tz) + ktkf(x, y, z)

=(tx)(∂xf)(tx, ty, tz) + (ty)(∂yf)(tx, ty, tz)

+ (tz)(∂zf)(tx, ty, tz)− kf(tx, ty, tz)

=kf(tx, ty, tz)− kf(tx, ty, tz) (1)

=0

For the second part we have g(1) = f(x, y, z)−f(x, y, z) = 0.

(d) Deduce that f is homogeneous of degree k.

When considering the ODE tg′ − kg, by seperation of varia-
bles(section 1.5), we can deduce that g(t) = Ctk−1.

Since we’ve already proven, that g(1) = C1k = 0, we follow
that C = 0 and therefore g(t) = 0, ∀t > 0.

We conclude that since g(t) = f(tx, ty, tz) − tkf(x, y, z) =
0, ∀t > 0, it must hold, that

f(tx, ty, tz) = tkf(x, y, z), ∀t > 0.

Let f be any differentiable function of one variable. Show that all
tangent planes of the surface

z = y · f(
x

y
)

pass through the point (0, 0, 0). Let G(x, y) := y · f(x
y
). Then the

surface z is equal to the graph of G. It holds that

∂xG = Gx(x, y) = f ′(
x

y
), ∂yG = Gy(x, y) = f(

x

y
)−

x

y
f ′(

x

y
).

The tangent planes in the points (x0, y0, G(x0, y0)) (with y ̸= 0) is

z =G(x0, y0) +Gx(x0, y0)(x− x0) +Gy(x0, y0)(y − y0)

=xf ′
(
x0

y0

)
+ y

[
f

(
x0

y0

)
−

x0

y0
f ′
(
x0

y0

)]
The point (0, 0, 0) satisfies this equation, which means that (0, 0, 0)
lies on this tangent plane. In other words, all tangent planes pass
through the origin.

Where does the tangent plane at (1, 1, 1) to the surface S = {(x, y, ex−y) :
(x, y ∈ R2)} ⊂ R3 intersect with the z-axis?
The surface is parameterized by f(x, y) = (x, y, ex−y). Notice that

f(1, 1) = (1, 1, 1) and Df(x, y) =

 1 0
0 1

ex−y −ex−y

. The tangent

plane g(x, y) is given by:

g(x, y) =f(x0, y0) +Df(x0, y0)

(
x− x0

y − y0

)

=

1
1
1

+

1 0
0 1
1 −1

(x− 1
y − 1

)

=

 x
y

1 + x− y

 !
=

0
0
z


=⇒ x = 0, y = 0

=⇒ z = 1

The equation z = 2y2 + x2 describes a surface S in R3, which
contains the point P = (1, 1, 3). Find the coordinates of the other
point of S that lies on the normal to S at P . Let f(x, y, z) = x2 +

y2 − z. Then S = {(x, y, z) ∈ R3 | f(x, y, z) = 0} is a level set.
The normal at a point (x, y, z) is given by ∇f = (2x, 4y,−1).
For the point P = (1, 1, 3) the normal is ∇f(1, 1, 3) = (2, 4,−1).
Therefore 1

1
3

+ t

 2
4
−1


is the equation for the normal at P .
We now insert this equation into f to find another point on this
normal contained in the level set.

f(1 + 2t, 1 + 4t, 3− t) = 0

(1 + 2t)2 + 2(1 + 4t)2 − (3− t) = 0

36t2 + 21t = 0 | : t, t1 = 0 =⇒ P

36t+ 21 = 0 | − 21, : 36

t = −
21

36
= −

7

12

=⇒ P2 =

1
1
3

−
7

12

 2
4
−1

 =

− 1
6

− 4
3

43
12


8 Sources
This cheatsheet was inspired by previous summaries from Julian
(xyquadrat) and Nicolas(Franco).
Apart from that the definitions were taken from the “Analysis 2”
script by E. Kowalski and the Lecture Notes from Ö. Imamoglu in
the HS2022 edition of the course.


	Differential equations
	Linear ODE's of order 1
	Variation of parameters
	Educated Guess for constant coefficients
	Linear ODE's with constant coefficients
	Seperation of Variables

	Derivations in Rⁿ
	Convergence
	Continuity
	Properties of sets
	Partial Derivatives
	Differentiability
	Higher derivatives
	Taylor polynomials
	Extrema
	Definite

	Integrals in Rⁿ
	Simple Integrals
	Line Integrals (Path Integrals)
	Potential
	Conservative Vector fields
	Riemann Integral in Rⁿ
	General sets
	Properties of the Integral
	Negligible Sets

	Change of Variables
	Green's theorem

	Topics from Analysis I
	Trigonometric identities
	Tables
	Sample tasks
	Multiple Choice
	Other tasks

	Sources

